The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters*

Brett Bode, David M. Halstead, Ricky Kendall, and Zhou Lei
Scalable Computing Laboratory, Ames Laboratory, DOE
Wilhelm Hall, Ames, 1A 50011, USA, help@scl.ameslab.gov
David Jackson, Maui High Performance Computing Center

Abstract

The motivation for a stable, efficient, backfill
scheduler that runs in a consistent manner on
multiple hardware platforms and operating
systems is outlined and justified in this work.
The combination of the Maui Scheduler and the
Portable Batch System (PBS), are evaluated on
several cluster solutions of various size,
performance and communications profiles. The
total job throughput is simulated in this work,
with particular attention given to maximizing
resource utilization and to the execution of large
parallel jobs.

1 Introduction

With the ever increasing size of cluster
computers, and the associated demand for a
production quality shared resource management
system, the need for a policy based, parallel
aware, batch scheduler is beyond dispute. To
this end the combination of a stable, portable
resource management system, coupled to a
flexible, extensible, scheduling policy engine
will be presented and evaluated in this work.
Features, such as extensive advanced reservation,
dynamic prioritization, aggressive backfill,
consumable resource tracking and multiple
fairness policies, will be defined and illustrated
on commodity component cluster systems. The
increase in machine utilization and operational
flexibility will be demonstrated for a non-trivial
set of resource requests over a range of duration,
and processor count tasks.

We will use the term large to describe jobs that
require a substantial portion (>50%) of the
available CPU resources of a parallel machine.
The duration of a job, is considered to be
independent of its resource request, and for the
purposes of this paper the term long will be used
to identify jobs with an extended runtime of
multiple hours. The opposite terms of small and

short will be used for the converse categories of
jobs respectively.

2. Scheduling Terminology

To clarify the nomenclature used in the
descriptive sections of this work we will now
include a glossary of terms, together with a brief
explanation of their meaning.

Utilization and turnaround

The ultimate aim of any dynamic resource
administration hierarchy is to maximize
utilization and job throughput and minimize
turnaround time. The aim of improving
utilization can be achieved by allocating tasks to
idle processors, but the task of maximizing
throughput is much more nefarious, involving
complex fair access decisions based on machine
stakeholder rights.

Prioritization and fairness

It is the goal of a schedule administrator to
balance resource consumption amongst
competing parties and implement policies that
address a large number of political concerns.
One method of ensuring appropriate machine
allocation is with system partitioning. This
approach, however, leads to fragmentation of the
system, and a concomitant fall in utilization
efficiency. To be preferred is a method by which
the true bureaucratic availability requirements
can be met, without negatively impacting the
utilization efficiency of the resource.

Fair share

The tracking of historical resource utilization for
each user results in the ability to modify job
priority, ensuring a balance between appropriate
access, and maximizing machine utilization.
Users can be given usage targets, floors and

*This work is supported by the Applied Mathematical Sciences Program of the Ames Laboratory- U.S. Department of Energy
(USDOE) under contract number W-7405-ENG-82 which is in part under the auspices of Computational Science Program of the
Mathematical, Information and Computational Science Division of the Office in Advanced Scientific Computing Research at USDOE

ceilings which can be configured to reflect the
budgeted allocation request.

Reservation

The concept of resource reservation is essential
in constructing a flexible, policy based batch
scheduling environment. This is usually a data
structure that defines not only the computational
node count, but also the execution timeframe and
the associated resources required by the job at
the time of its execution.

Resource manager

The resource manager coordinates the actions of
all other components in the batch system by
maintaining a database of all resources,
submitted requests and running jobs. It is
essential that the user is able to request an
appropriate computational node for a given task.
Conversely, in a heterogeneous environment, it
is important that the resource manager conserve
its most powerful resources until last, unless they
are specifically requested. It also needs to
provide some level of redundancy to deal with
computational node failure and must scale to
hundreds of jobs on thousands of nodes, and
should support hooks for the aggregation of
multiple machines at different sites.

Job scheduler/ Policy manager

The job scheduler takes the node and job
information from the resource manager and
produces a list sorted by the job priority telling
the resource manager when and where to run
each job. It is the task of the policy manager to
have the flexibility to arbitrate a potentially
complex set of parameters required to define a
fare share environment, yet retain the simplicity
of expression that will allow the system
administrators to implement politically driven
resource allocations.

Job execution daemon

Present on each node, the execution daemon is
responsible for setting up the node, servicing the
initiation request from the resource manager,
reporting its progress, and cleaning up after the
job termination, either upon completion or when
the job is aborted. It is important that this be a
lightweight and portable daemon, allowing for
rapid access to system and job status information
and exhibit a low overhead of task initiation, to

facilitate scalable startup on massively parallel
systems.

Co-allocation

A requirement for an integrated computational
service environment is that mobile resources,
such as software licenses and remote data access
authorizations, may be reserved and accessed
with appropriate privileges at execution time.
These arbitrary resources need to be made
transparently available to the user, and be
managed centrally with an integrated resource
request notification system.

Meta-scheduling

A meta-scheduler is a technique of abstraction
whereby complex co-allocation requests and
advanced reservation capabilities can be defined
and queried for availability before the controlling
job begins execution. This concept ties in
naturally to the requirement for data pre-staging
since this can be considered as merely another
resource.

Pre-staging

The problems of coordinating remote data pre-
staging or access to hierarchical storage can be
obviated by an intelligent advance reservation
system. This requires integration with the meta-
scheduler and co-allocation systems to ensure
that the initiation of the setup phase is
appropriately timed to synchronize with the
requested job execution.

Backfill scheduling

The approach of backfill job allocation is a key
component of the Maui scheduler. It allows for
the periodic analysis of the running queue and
execution of lower priority jobs if it is
determined that their running will not delay jobs
higher in the queue. This benefits short, small
jobs the most, since they are able to pack into
reserved, yet idle, nodes that are waiting for all
of the requested resources to become available.

Shortpool policy

The shortpool policy is a method for reserving a
block of machines for expedited execution and
turnaround. This is usually implemented during
workday hours and can predictively assign
currently busy nodes to the shortpool if their task

will finish within the required window (usually
under two hours).

Allocation bank

The concept of an allocation bank is essential in
a multi-institution shared resource environment
[1]. It allows for a budgeted approach to
resource access, based on a centralized user
account database. The user account is debited
upon the execution of each job, with the
individual being unable to run jobs once the
account has been exhausted.

Reservation security

An essential area of research centers on
authentication and security of remotely shared
resources. Issues such as secure interactive
access and user authentication have been
addressed and resolved to a large extent, but the
issue of delayed authentication and inter-site
trust are still subjects for research. The
important factor of non-repudiation needs to be
addressed in order to validate the source of a
submission.

Job expansion factor

This is a way of giving small time limit jobs a
priority over larger jobs by calculating their
priority from the sum of the current queue wait
time and the requested wall time relative to the
requested wall time.

Job Efficiency

This is the percent of the requested time actually
used by the job. For simple schedulers this
factor has little effect on the overall scheduling
performance. However, for the backfill portion
of the Maui Scheduler this factor has a much
more significant influence, since low job
efficiencies cause inaccurate predictions of holes
in the reservation schedule. The best ways to
improve this factor are user education and
resource monitoring.

Quality of service

The Maui Scheduler allows administrators fine
grain control over QOS levels on a per user,
group and account basis. Associated with each
QOS is a starting priority, a target expansion
factor, a billing rate and a list of special features
and policy exemptions. This can be used impose

graduated access to a limited resource, while
ensuring maximum utilization of idle
computational assets.

Downtime scheduling

One important advantage of a time based
reservation system is that scheduling down-time
for repair or upgrade of running components is
easily performed. This is convenient for the
current clusters, but will become essential as the
size and production nature of parallel clusters
continues to increase.

SMP aware queuing

The debate over the utility of multiple processors
per computational node continues to rage. It is
clear, however, that the incremental cost of
additional CPUs in a node is less than a
concomitant increase in the total number of
nodes. The question is how to exploit the co-
location advantage of data between SMP CPUs,
and to expose this potential performance
enhancement to the user in a consistent manner
via the scheduling interface. There are several
different approaches available to exploit SMP
communications (Pthreads, Shmem etc.), but this
topic is beyond the purview of this work.

3. Testbed Hardware
3.1 Linux 64 node

The largest test environment considered in this
work is a cluster of 64 Pentium Pro machines
with 256 MBytes of RAM, connected by a flat
44 Gbit/sec Fast Ethernet switch. The cluster
was constructed in accordance to the Scalable
Cluster Model [2] with the file server and
external gateway node utilizing a dedicated
Gigabit Ethernet connection to the switch for
improved performance. The compute nodes are
running a patched 2.2.13 Linux kernel with the
server nodes providing both Fortran and C
compilers with MPI and PVM message passing
libraries. Version 2.2p11 of the PBS server runs
from the file server node, along with the Maui
scheduler version 2.3.2.12.

3.2 Compaq 25 node
The other cluster from which results will be

reported consists of 25 Compaq 667 MHz Alpha
XP1000 machines, 15 of which have 1024 MB

of RAM and 10 have 640 MB of RAM. One of
the 25 nodes has reduced scratch disk space and
is thus limited to small jobs. These machines are
connected by Fast Ethernet and run the Tru64
Unix operating system. This configuration
provides a fairly challenging test for the
scheduler since there are three different node
resource levels available for users to request.
Since we ported the Maui Scheduler PBS plugin
to Tru64 Unix several months ago, the cluster
has been running in production mode, executing
parallel computational chemistry jobs using the
GAMESS [3] code. We will be using this cluster
to illustrate the pitfalls of real-world
environments, and to highlight some of the
measures that can be taken to ameliorate certain
user shortcomings.

4. Batch scheduler description
4.1 Background

Since clusters and cluster-like systems have been
around for several years, there have been
multiple queuing systems tried out and several
are currently in wide use. Among these are the
Distributed Queuing System (DQS), Load
Sharing Facility (LSF), IBM's LoadLeveler, and
most recently the Portable Batch System (PBS).
Each of these systems has strengths and
weaknesses. While each of these works
adequately on some systems, none of them were
designed to run on cluster computers. Currently
the system with the best cluster support is PBS.
Thus we will consider PBS using its built-in
scheduler compared with the addition of the
plugin Maui scheduler.

4.2 PBS

Portable Batch System is a POSIX compliant
batch software processing system originally
developed at NASA’s Ames research center for
their large SMP parallel computers [4]. It has
the advantage of being configurable over a wide
range of high power computer architectures,
from heterogeneous clusters of loosely coupled
workstations, to massively parallel
supercomputers. It supports both interactive and
batch mode, and has a user friendly graphical
user interface.

Recently the focus of development has shifted to
clusters and basic parallel support has been
added. In addition, the Maui scheduler has been

ported to act as a plugin scheduler to the PBS
system. This combination is proving successful
at scheduling jobs on parallel systems. However,
since PBS was not designed for a cluster-like
computer, it lacks many important features. For
instance, while the resource manager and
scheduler are able to reserve multiple processors
for a parallel job, the job startup, including the
administrative scripts, is performed entirely on
one node.

PBS includes several built-in schedulers, each of
which can be customized for the local site
requirements. The default is the FIFO scheduler
that, despite its name, is not strictly a FIFO
scheduler. The behavior is to maximize the CPU
utilization. That is, it loops through the queued
job list and starts any job for which fits in the
available resources. However, this effectively
prevents large jobs from ever starting since the
required resources are unlikely to ever available.
To allow large jobs to start, this scheduler
implements a “starving jobs” mechanism. This
mechanism initiates when a job has been eligible
to run (i.e. first in the queue) longer than some
predefined time (the default is 24 hours). Once
the mechanism kicks in, the scheduler halts
starting of new jobs until the “starving” job can
be started. It should be noted that the scheduler
will not even start jobs on nodes which do not
meet the resource requirements for the “starving
job”.

4.3 Maui

Perhaps the most complete system currently
available is the IBM LoadLeveler software
developed originally for IBM’s SP machines, but
now available on several platforms (Linux is not
supported). While LoadLeveler provides many
useful features, its implementation leaves a lot to
be desired. For instance the scheduler was
immediately recognized as inadequate, since its
poor parallel scheduling resulted in low total
machine usage due to many idle nodes waiting
for future jobs. To solve this problem the Maui
Scheduler [5] was written principally by
David Jackson for the Maui High Performance
Computer Center. This scheduler has proven to
be a dramatic success on the SP platform, so
much so that it is now used in place of the
default scheduler in LoadLeveler at many SP
installations. LoadLeveler is probably the only
currently available package, which was designed
for a parallel computer from the beginning and
thus addresses many of the requirements listed

above. Figure 1 illustrates the difference between
the PBS FIFO and PBS with the Maui scheduler
in place.

PBS FIFO

Server Commands Compute Nodes

Status
PBS_server
Start/
qsub '?:e?:ﬁisn/a(e
qdel jobs

user request

PBS Maui
Server Commands Compute Nodes
Status
PBS_server
Get/u s
Star tatus H
qsub Terminate y i v Prologue
qdel jobs / E
- gt : Ry o S
(W EZE=="10Y
R
showq : 7 7
: 21| Us|
user request 1 ‘PUS P
.
[
I

Figure 1. Schematic of the interaction profile
between PBS running the FIFO scheduler and the
Maui Scheduler.

The key to the Maui Scheduler is its wall-time
based reservation system. This system orders the
queued jobs based upon priority (which in turn is
derived from several configurable parameters),
starts all the high priority jobs that it can, and
then makes a reservation in the future for the
next high priority job. Once this is done, the
backfill mechanism attempts to find lower
priority jobs that will fit into time gaps in the
reservation system. This gives large jobs a
guaranteed start time, while providing a quick
turn around for small jobs.

5. Evaluation description
5.1 The Simulated Job Mix

The right mix of jobs for any simulation is
nebulous at best. Nothing is better than a real
job mix from the user community in question,
but that is impossible to reproduce due to user

dynamics. User resource requests vary directly
with their needs and cycle with external forces
such as conference deadlines. To this end we
have defined a job mix that fits a rough average
of what we have observed on our research
clusters and on the MPP systems available at
supercomputer centers such as NERSC [6].

The job mix has Large, Medium, Small, Debug,
and Failed jobs. Each job has a randomized set
of the number of processors (nproc), the time
actually spend doing work (work time), the time
requested from the resource management system
(submit time) and a submission delay time (delay
time). Large, Medium, and Small jobs have a
work time that is 70% or more of the submit
time. Submit time is always greater than or
equal to the work time. Large jobs are those that
have nproc > 50% of those available. Medium
jobs have nproc between 15% and 50% of the
available nodes. Small jobs are those with nproc
between 30% and 15% of available nodes.
Debug jobs have a work time that is greater than
40% of the submit time but use less than 10% of
the available processors. Failed jobs are defined
by a work time that is less than 20% of the
submit time.

Close inspection of these parameters will show
that not all jobs generated by a randomized
nproc, work time, and submit time, fall into these
categories. One further target constraint is that
Large jobs are 30% of the total set of jobs,
Medium jobs are 40%, Small jobs are 20%,
Debug Jobs and Failed jobs are both 5%. Jobs
are randomly generated and then classified as
Large, Medium, Small, Debug, Failed or
“undefined” jobs. Undefined jobs are
automatically rejected and others are added only
if their addition will not increase their
constrained classification above the limits
outlined above.

In the 76 jobs of the job mix used in these
simulations, 480 random jobs were generated.
The resultant mix from this defined job mix
algorithm yielded 28.95% Large, 40.79%
Medium, 19.74% Small, and 5.26% Debug and
Failed jobs. In actual numbers this corresponds
to 22 Large, 31 Medium, 15 Small, 4 Debug, and
4 Failed jobs.

The randomized delay time has the effect of jobs
being submitted in a random order to the batch
system. The first job generated will not
necessarily be the first job submitted. All of the

job mix data is available online [7]. The exact
same job mix was used with each scheduler
setup, PBS/FIFO, PBS/MAUI and PBS/MAUI
with backfill turned off.

5.2 Users and the Job Mix.

The defined job mix does not consider user
interaction currently. There are no automatic or
post submitted jobs that fit any gaps in the
system as the scheduler runs jobs, e.g., jobs to fit
the backfill mechanism available in some
schedulers. Furthermore, it is quite typical for
users to simply submit jobs with the maximum
allowed time for the queue in question. Our
simulation assumes users can predict the
resources needed with reasonable accuracy. All
jobs are submitted after 180 minutes from the
start of the simulation. This does not match the
constant influx of jobs on our research cluster or
at any supercomputer center.

6. Test results
6.1 Simulation results
Perhaps the most significant result and the

simplest are the total run time for each of the
scheduler configurations as shown in Table 1.

Table 1.

Scheduler | Total run time (Hours)
PBS FIFO 71.1

Maui Scheduler 66.75

Maui without backfill 66.71
Theoretical Minimum 53.6
Sequential Maximum 90.2

Table 1 includes a Theoretical Minimum time
which is simply the total number of node-wall
hours divided by 64 (the number of available
CPUs). This is clearly not an achievable value
since it ignores the packing efficiency of the
jobs. Conversely the Sequential Maximum
represents the maximum total time the tests
would take if they were simply run in a FIFO
fashion with no attempt to overlap jobs.

Obviously both schedulers do substantially better
than the Sequential Maximum, and the Maui
scheduler does substantially better than the PBS
FIFO scheduler. It may, however, be surprising
that the backfill scheduler is actually slower than
Maui without backfill even if only by a small
amount. This can be explained by the job

efficiencies, which for the test set of jobs had all
but 5 jobs with an efficiency of 50% greater and
23 of the 76 jobs with an efficiency greater than
90%. If all jobs had an efficiency of 100% then
the backfill algorithm would always be faster.
However, since most jobs finish significantly
before their scheduled end time it is possible that
a backfilled job will keep a reservation from
being started early. It is important to note that
backfilled jobs will never prevent a job
reservation from starting on time, but it might
prevent a job reservation from moving forward
in time.

Figure 2 illustrate the quite different ways in
which the Maui Scheduler and the FIFO
scheduler operate. The upper frame shows time,
in hours, on the x-axis and job sequence number
on the y-axis for the FIFO scheduler. The job
sequence number represents the order in which
the jobs were submitted to the system. The
lower half shows the same information for the
Maui Scheduler. Since the Maui Scheduler
result without the backfill algorithm was so
similar to the regular Maui Scheduler result, it
was not plotted separately.

For the FIFO scheduler the job profile shows that
initially mainly small jobs were run up until the
starving job state kicked in for the for the first
large job in the queue. Once in the starving job
state FIFO became truly a first in first out
scheduler.

The profile for the Maui scheduler is certainly
anything but FIFO. It shows a more uniform
gueue wait time that is driven more by the
number of nodes requested than by the initial
queue order. This results in the smaller node
requests being run along with the larger node
requests rather than all at once as with the FIFO
scheduler. Because of this the Maui Scheduler is
able to maintain higher average node utilization
during the first portion of the test run, until it
runs out of small node requests to backfill. This
effect is illustrated in Figure 2 that shows the
node utilization over the test run for all three
scheduler tests. Figure 3 shows that Maui is able
to maintain a more consistently high node
utilization until about halfway through the test
when it ran out of small jobs. The FIFO
scheduler started out high, but then suffered a
large dip as it cleared out the small jobs to let a
large job start.

Submission order

FIFO Execution %}
Profile |E===="T7

mSubmit Delay %r

B Queued State

BmRun State

Maui Execution %‘ ‘ ‘

Profile .~ —mmmy

Submission order

0 10 20 30 40
Time (hours)

50 60 70

0 16 32 48 64
Processors Per Job

Figure 2. The execution profiles for the FIFO and Maui batch queues are presented in the left bar
chart showing the submission delay, the wait time, and the run time respectively for each job. The
right panel shows the number of processors requested by each of these jobs when they execute.

A further analysis of the data reveals that the
FIFO scheduler starts all of the jobs with fewer
than 10 nodes requested within 1 hour of
submission. On the other hand Maui starts the
last job with fewer than 10 nodes after over 16
hours in the queue. This difference is significant
because it allows Maui to overlap the execution
of more jobs during the test run, than does the
FIFO scheduler. Indeed while the FIFO
scheduler produces queue wait times nearly
independent of the number of processors,
ignoring the small jobs, the queue wait times
under Maui are more similar to a bell curve with
the maximum wait times experienced by jobs
with node requests of approximately half the
number of available nodes.

6.2 Theoretical Simulated Job Mix Results

In order to better evaluate the different
schedulers performance for the evaluation job
mix, a simulation routine was implemented that
determined the first in first out (FIFO) execution
of an ordered series of jobs. All jobs are
executed in the specified order filling the system

to the maximum number of nodes (e.g., 64). By
running this routine with the submit order of the
76 simulation jobs, the FIFO execution time
would be 69.63 hrs. Executing them in reverse
order gives a FIFO execution time of 70.46 hrs.
The jobs ordered as they were run in both the
PBS/FIFO and PBS/MAUI simulations yields
69.16 hrs and 65.99 hrs, respectively. This
demonstrates that the delayed submission does

oabers Maximum Number of Processors ~. .

56 | ”J '_J-Lh f— _\ﬂ I - | =

At erTE

o] HHICIEN
gl | o

32

24

16 64 Node Cluster Maui FIFO
Utilization Profile 66.75hrs 71.1hrs

8 NI/

0
0 10 20 30 40 50 60 70 80
Time (hours)

Number of Active Processors

Figure 3. Cluster utilization comparison for PBS
with FIFO, and with the Maui Scheduler active.

have an effect on how the jobs are eventually
executed. In theory, with this routine we could
find the optimal order for this specific set of
jobs. Since there are 76 factorial (76!) possible
orders, we did not pursue this.

6.3 Real Job Mix

The alpha cluster, running under moderately
loaded conditions, has averaged 78% node hour
utilization over the past three months. This was
achieved while exceeding a total of over 1,200
jobs with node usage between 1 and 16 CPUs
(Ave. of 4.3) and up to 2 wall days of time, the
queue maximum. Out of the 1,200 jobs only 65
experienced a queue wait time of more than one
day and most, 880, waited less than one hour to
start execution.

This performance is despite the fact that the
users are very poor at predicting the run time of
their jobs. In fact the vast majority, 1146, of the
jobs simply requested the maximum queue run
time (2 days). The resulting job efficiencies
were quite poor with only 140 jobs having an
efficiency greater than 50% (i.e. using more than
half of their requested time). It is unlikely that
the job efficiencies will improve unless the load
on the cluster increases producing longer queue
wait times. Without long queue wait times users
do not have much incentive to accurately predict
the job run time or to attempt to fit a job into an
existing hole in the job backfill window.

7. Future Directions

While we feel that the Maui Scheduler does an
excellent job of scheduling jobs on flat
interconnected clusters, a major area of on-going
research is locality based scheduling. That is,
scheduling based upon the topology of the
interconnect, which might include interconnects
with a tree structure and will certainly include
SMP building blocks. This type of scheduling
will become even more important in the near
future since it becomes increasingly difficult and
expensive to build a flat interconnect as the
cluster size grows. In addition, new interconnect
technologies are appearing which use loop, mesh
and torus topologies.

There are of course many other areas of job
resource management that need improvement on
clusters. For example, job startup, monitoring
and cleanup should be done in a parallel fashion.
In addition the database of node and job status

needs significant work to handle large clusters
with large numbers of jobs effectively.

We plan to augment the simulations here with
several techniques. First instead of a single pre-
defined list of jobs randomly generated from a
single source we will use "user-agents" that will
submit jobs to the system. Each user-agent will
submit jobs randomly generated but from a sub-
class of the overall job mix. For example, a
user-agent might represent a code developer
submitting many debug jobs during normal
working hours, a heavy user that submits long
jobs, a greedy user that submits many jobs which
fill gaps that a backfill mechanism might
recognize, etc. The second modification is to
change the metric. That will become the total
number of active node hours in a given fixed
time length. The user-agents will stop
submitting jobs only after the metric has been
met.

8. Conclusions

We have shown that the Maui Scheduler plugin
to the PBS package provides a significant
improvement in overall cluster utilization
compared with the built-in FIFO scheduler. The
Maui Scheduler does this by combining an
intelligent wall time based node reservation
system with an efficient backfill algorithm. The
result is a flexible policy based scheduling
system that provides guaranteed maximum start
times while maintaining high total node
utilization.

There are many issues that have yet to be
addresses, such as cluster queue aggregation,
inter-site trust and delayed authentication in
addition to scalable system monitoring over a
large distributed system.

9. References

[1] S. M. Jackson "QBank, A Resource
Allocaiton Management Package for Parallel
Computers, Version 2.6" (1998), Pacific
Northwest National Laboratory, Richland,
Washington 99352-0999.

[2] www.extremelinux.org/activities/usenix99/
docs/

[3] M. W. Schmidt, K. K. Baldridge, J. A. Boatz,
S. T. Elbert, M. S. Gordon, J. H. Jensen,

S. Koseki, N. Matsunaga, K. A. Nguyen,

S.J. Su, T. L. Windus, M. Dupuis,

J. A. Montgomery J.Comput.Chem. 14, 1347-
1363(1993)

[4] PBS_1, http://www.pbspro.com/

[5] http://www.mhpcc.edu/maui

[6] NERSC, The National Energy Research
Scientific Computing Center,
http:/www.nersc.gov

[7] This complete data set is provided to allow
the reader to reproduce our simulations if
desired: www.scl.ameslab.gov/Personnel/rickyk/

jobmix.html

